Development of bismuth drugs for the treatment of microbial infections

Professor Hongzhe Sun
Department of Chemistry
Faculty of Science

HKU team member: Dr. Shuofeng Yuan (Microbiology)
Dr. Hongyan Li
Dr. Runming Wang

May 17, 2021
Summary of the Impact

Prof. Hongzhe Sun’s research has made international impact on the development of inorganic pharmaceutics and providing prospective therapeutic options for major diseases.

- He determined the structure of bismuth drugs in gastric fluid and systematically deciphered their anti-*Helicobacter pylori* mode of mechanism, which has been embodied in the textbook and utilized as the principle of bismuth-based antiulcer drugs development in China.

- He firstly proposed bismuth drug as anti-SARS-CoV agent in 2007 and demonstrate their *in vivo* potency against SARS-CoV-2 during COVID-19 pandemic, which provided the base of phase 3 clinical trial on COVID-19 patients treated with oral bismuth in China.

- He initiated the area of bismuth drug as antimicrobial resistance breaker for the treatment of (multi)drug-resistant bacterial infections.
Underpinning Research

✓ We have >200 publications

✓ >4 patent granted/filed

✓ 1 RIF grants
 2 CRF grants
 3 ITF grants

... UC Berkeley Earl L Muetterties Memorial Lectureship (2018)

WuXi AppTech Life Science & Chemistry Research Award (2016)

Norman & Cecilia Yip endowed Professorship in Bioinorganic Chemistry
Outline of underpinning Research

Deciphering of bismuth drugs in simulated gastric acid and their mode of action against *Helicobacter pylori*

—Since 2002, project leader

Development of bismuth drug as antiviral agents

—Since 2003, project leader,
 cooperator: Prof. Kwok-Yung Yuen, Prof. Jiandong Huang, Prof. Bojian Zheng, Dr. Shuofeng Yuan

Overcoming antimicrobial resistance by bismuth drugs

—Since 2014, project leader
 cooperator: Dr. Richard Yi-Tshun Kao, Dr. Pak-Leung Ho
Bismuth citrate structure was highlighted in the cover of *Metal Ions in Biological System* (2004, 41), and also used in the promotion leaflet of Livzon’s product.

To form protective coating

15.3 Å

(Sun et al, *JACS* 2003, 125, 12408)
Bismuth drugs are effective against SARS-CoV-2 (therapeutic index > 900)

Bismuth suppresses the replication of the virus in animal model

Selectivity index: RBC = 975 in cell infection model

RBC inhibits viral helicase activity and suppresses replication of SARS-CoV-2 in vitro

Target zinc-finger domain of viral helicase

\[IC_{50} = 0.70 \, \mu M \]

RBC lowers viral loading in both lung and nasal turbinate in hamster infection model

\(\text{Viral loading} \quad >10x \)

\(\approx \text{Remdesivir} \)

(DMSO, Remdesivir, RBC)

(Yuan SF, Wang RM, Chan JFW, ... Yuen KY, Sun H, Nature Microbiol 2020, 5, 1439)
New approach to fight against infection by superbugs: metallodrugs

- Bismuth drugs are selectively toxic to microbes based on metallome studies.
- Bismuth drug inactivate key resistant determinant NDM-1 in superbugs.

‘Kill two birds with one stone’ (一石二鸟)

CBS restore β-lactam antibiotics against NDM-1+ superbugs

In vivo effectiveness

Sun, Wang, Li, Kao, Zhang, US patent: 10,201,518 B2
Partial work was selected in the *Inorganic Chemistry* textbook (Armstrong et al, Oxford University Press, 2014)

Rehder D. “*Bioinorganic Chemistry*”, Oxford University Press, 2014, p42
Impacts Achieved

>37k accesses
>50 medium reported

Local Top Ten innovation and technology news in 2020 (Hong Kong)

- >37k accesses
- >50 medium reported

Related patent filed providing scientific basis for the phase III/IV clinical trial on COVID-19 patients treated with oral bismuth drugs (ChiCTR2000030398 and NCT04811339)
Acknowledgement

- Past and present members of the group, collaborations
- RGC and ITF
- Livzon Pharmaceutical Group
- Norman & Cecilia Yip Foundation